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Abstract

This paper aims to put forth a new approach to construct the travelling wave
solutions of the partial differential equation put forth by Ronald Fisher, Andrey
Kolmogorov, Ivan Petrovsky, and N. Piskunov. In further sections we display the
numerical analysis of this propagation that is widely used to model the spatial
distribution of population.

1 Introduction

A reaction-diffusion equation looks like the heat equation with a function f(u) added on:

ut = 4u+ f(u) (1)

Since f(u) may be non-linear, explicit solutions cannot usually be found. Whereas the linear
wave equation propagates arbitrary solutions at a fixed speed, reaction-diffusion equations
may single out certain wave forms and allow only these to propagate without distortion [3].
A typical problem for an equation of this kind investigates the existence, form, and stability
of these traveling waves. Such a solution can be written as:

u(x, t) = U(z), z = x− ct (2)

In 1937, Ronald Fisher and, independently, Andrey Kolmogorov, Ivan Petrovsky, and N.
Piskunov (KPP) investigated the wavelike spread of advantageous genes in a population.
Fisher’s equation was one-dimensional and had a specific ”logistic” reaction term:

ut = Duxx + ru(1− u

K
) (3)

Fisher proposed this equation as a model of diffusion of a species in a one-dimensional
habitat, where D is the diffusion constant, r is the growth rate of the species, and K is the
carrying capacity. A dimensionless version of the equation takes the form of the one dimen-
sional, semi-linear parabolic partial differential equation with the dimensional parameters
being diffusivity, the proliferation rate and the carrying capacity density:

ut − uxx = f(u), t, x ∈ R (4)

While the original cause of developing this equation was to activate the gene distribution
within a population, the Fisher-KPP model and its extensions support travelling wave so-
lutions that are successfully used to design numerous invasive phenomena with applications
in biology, ecology, and combustion theory. The equation has been described by Andrey
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Nicolaevich Kolmogorov (1903-1987) as the natural population propagation, mass transfer,
the processes of chemical reaction, and heat [2]. It is made use of in genetics to define
the population distribution with growth management as well as to indicate the density of
individuals or particles. In cell biology, the spatial spreading of invasive cell populations has
been modelled using the Fisher-KPP model and its extensions for a range of applications
including in vitro cell biology experiments and in vivo malignant spreading. Other areas of
application include combustion theory and bushfire invasion. Some of the extensions of the
Fisher-KPP model involve working with different geometries, such as inward and outward
spreading in geometries with and without radial symmetry.

The multiple variations of the Fisher-KPP model include considering models with nonlinear
diffusivity; incorporating different nonlinear transport mechanisms; models of multiple in-
vading subpopulations; and multi-dimensional models incorporating anisotropy. However,
in the context of the above, this paper aims to consider the Fisher-KPP equation in 2D
spatial domain:

ut − k4u = αu(1− u) (5)

The Fisher-KPP equation can be interpreted as a model of population dynamics in a one-di-
mensional environment, where particles simply replace other particles and, therefore, their
density remains bounded. All fluctuations of the microscopic model have been neglected to
obtain the Fisher-KPP equation.

2 Mathematical Interpretation of Fisher-KPP Propa-

gation

The mathematical study of reaction-diffusion equations began in the 1930s. Fisher and
Kolmogorov, Petrovsky and Piskunov were interested in wave propagation in population
genetics modeled by the homogeneous equation:

∂u

∂x
−D∂

2u

∂x2
= ru(1− u) (6)

The reaction part of the equation can be understood by taking the predator-prey model
where u̇ = auv − bu acts as the predator and v̇ = cv − duv acts as prey. We now enslave
the prey to the predator (u = αv). In this way, the set of equations adopts a form we just
studied. Moreover, with the change of variable P ∗ = b

γ
P , we get:

δP

δt
= γP (1− P ) +D

δ2P

δx2
(7)
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Here, the * has been dropped for clarity. By ignoring the diffusion term, it is possible
to identify the logistic differential equation, i.e. the continuous realization of the logistic
map: xn+1 = axn(1− xn). Both analog models yield to the conclusion that the underlying
mechanism is that of the growth of a self-limiting reproductive population. In fact, the
equation including diffusion was first suggested by Ronald Fisher in 1937 as a deterministic
version of a stochastic model for the spatial spread of a favored gene in a population.

The Fisher-KPP model gives rise to travelling wave-like solutions that do not allow the
solution to go extinct and will propagate indefinitely on a semi-infinite domain. In other
words, it is a self-similar wave front which moves in both space and time.

By taking a generalized form of the propagation into account, we agree to the variables
which can occur with the population lives in the habitat, i.e. the growth rates differ in
space and time. This could lead to various possibilities, including 1. A particular location
is better suited to the inhabitants; 2. The habitat encountered regular (nearly periodic)
change; and 3. The population is affected by inherent periodic change which differs based
on season.

What makes Fisher-KPP interesting is that many of the equations that describe a front
h(x, t) where a stable state invades an unstable state have the same properties as the Fish-
er-KPP equation. The properties shared by all the fronts in the class of the Fisher-KPP
equation include A. There is an unstable constant solution and a stable constant solution;
we always write the equation so that h(x, t) = 0 is unstable and h(x, t) = 1 is stable, and
B. There exist positive travelling wave solutions h(x, t) = v(x − vt) if and only if v >= vc
for some critical velocity vc.

In the Fisher-KPP equation, vc = 2.

3 Travelling Wave Solutions

A travelling wave is a wave that advances in a particular direction, with the addition of
retaining a fixed shape. Moreover, a travelling wave is associated to having a constant
velocity throughout its course of propagation. Such waves are observed in many areas
of science, like in combustion, which may occur as a result of a chemical reaction. In
mathematical biology, the impulses that are apparent in nerve fibres are represented as
travelling waves. Also, in conservation laws associated to problems in fluid dynamics, shock
profiles are characterised as travelling waves. Furthermore, the structures present in solid
mechanics are typically modelled as standing waves. Hence, it is important to determine
the dynamics of such solutions.
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A travelling wave solution is obtained upon solving a model that corresponds to a system.
Generally, these models take the forms of partial differential equations (PDEs), where the
dynamics of the systems are comprehended upon solving for solutions. These travelling
wave solutions are expressed as u(x, t) = U(z), where z = x− ct. Here, the spatial and time
domains are represented as x and t, with the velocity of the wave given as c.

If c = 0, the resulting wave is named a stationary wave. Such waves do not propagate, and
are typically observed when inducing a fixed boundary. For a travelling wave that approaches
constant states given by U(−∞) = ul and U(∞) = ur, with ul = ur, we have what we call
a wave front. However, if the constant states are equal with ul = ur, the corresponding
wave is known as a pulse wave. If a wave exhibits periodicity with U(z+F ) = U(z), where
F > 0, the wave is called a spatially periodic wave.

4 Construction of Travelling Wave Solutions to Fisher-

KPP Equation

4.1 Approach 1

In this approach proposed by Jonkhout [4], we make use of the Fisher-KPP equation in its
dimensionless form (4). This has been derived by scaling time to the growth factor, distance
to the diffusion length, and population size to the maximum population. Therefore, only
values of u between zero and one are relevant.

A traveling wave solution is a solution which satisfies u(x, t) = φ(x− ct) for some function
φ : R→ R and c ∈ R. The function φ is the wave profile and c, the wave velocity.

Now, this approach for construction of travelling wave solutions to the Fisher-KPP equation
includes introducing the co-moving frame write ξ = x− ct. Upon substituting φ(x− ct) for
u, the left-hand side of the equation becomes:

ut(ξ) =
dφ

dξ
(ξ)

dξ

dt
(ξ) = −cφ′(ξ) (8)

In this case, the right hand side becomes:

uxx+ u(1− u) = φ′′(ξ) + φ(ξ)(1− φ(ξ)) (9)

Combining both these, we procure the ordinary differential equation:

φ′′ + cφ′ + φ(1− φ) = 0 (10)
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However, while we can find explicit solutions of the equation for specific values of C, the
exact solutions cannot be easily determined, since the equation is non-linear. Therefore,
to study the behaviour of such equations, we write is as a two-dimensional system of first
order equations by setting ψ = φ′ and then moving on to determine the character of the
fixed points by computing the Jacobian matrix J of this system.

As explained by Jonkhout, after calculating the characteristic equations and the eigenvalues
at (0, 0) and (0, 1), we consider two cases for c separately: 0 < c < 2 and c > 2.

In the case 0 < c < 2, they derive that there are no orbits (ψ(ξ), φ(ξ)) such that ψ(x− ct)
is a travelling wave that is relevant in the context of population dynamics. However, in the
case c > 2, we make use of triangle OAB in a heteroclinic orbit, where O is the origin, A is
(1, 0) and B is the point (1,−b). We prove that there is an orbit that leaves (1, 0) and enters
OAB and that no orbit can leave the triangle in forward direction. As a consequence of the
monotone convergence theorem, we receive a limit in this case. By the Poincare-Bendixon
theorem, this limit must be the first coordinate of a fixed point. The limit is not equal to
one, and, since there are only two fixed points, it is equal to zero.

4.2 Approach 2

Recall that the Fisher-KPP equation in 1-D is given by:

Ft − kFxx = αF (1− F ), (11)

where, k and α are constants. We now look for solutions f(t) such that F (t, x) = f(x− ct)
for some constant C (speed). Using the chain rule, we have:

Ft(t, x) =
d

dt
f(x− ct) = −cf ′ (12)

Fxx(t, x) =
d2

dx2
f(x− ct) = f ′′ (13)

Therefore, f solves the following ordinary differential equation:

−cf ′ − kf ′′ = αf(1− f) (14)

lim
x→−∞

f(x) = 1 lim
x→+∞

f(x) = 1
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Main Idea

We know that function f lies from R to [0, 1]. By approximation, let us assume that a > 0
is a big fixed number. Let fa be the solution of:

−caf ′a − kf ′′a = α(f(1− f)) (15)

fa(−a) = 1 fa(a) = 0

Here, fa is a function [−a, a]→ [0, 1].

The system above has more than 1 solution for different values of ca. In fact, it has a
solution for every ca. In order to specify the speed uniquely, we must impose an additional
normalisation limitation fa(0) = 1

2
.

Theorem 1 For all a the system stated above has a solution, that satisfies bounds

lim
x→−∞

f(x) = 1 and lim
x→+∞

f(x) = 1. (16)

Moreover, it is a subsequence an such that

lim
x→+∞

fan(x) = f(x) and lim
x→+∞

can(x) =
√

2kα (17)

5 Numerical Solution of the Fisher-KPP Equation

The Reduced Differential Transform Method (RDTM) was primarily introduced by Keskin
and Oturanc [5] in 2009, which is an extension of the differential tranform method, first
submitted by Zhou. RDTM is an iterative procedure for obtaining Taylor series solution of
differential equations. The solutions achieved by the RDTM is an infinite power series for
initial value problems, which can be, in turn expressed in a closed form, the exact solution.

According to the basic properties of the RDTM, we can find the transformed form of the
Fisher–KPP equation by starting with initial approximations u(x, 0) = u0(x) = U0(x) and
moving on by obtaining the rest of the components. We then take the inverse transforma-
tions, thereby obtaining an n-terms approximate solution:

u(x, t) = lim
x→+∞

u(x, t) = lim
x→+∞

(
n∑
k=0

Uk(x)

)
(18)

We can then use this to calculate the numerical results [6].
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6 Conclusion

Through the means of this paper, we have explored two approaches that can be used to
construct travelling wave solutions for the Fisher-KPP propagation. Using the Reduced
Differential Transform Method, we also derived an equation that can be used to calculate
numerical solutions to the equation.

7 Scope for Further Research

A possible research area related to this paper would be the addition of a Line of Fast
Diffusion [1] and studying the impacts of the same on a non-linear partial differential equa-
tion such as the Fisher-KPP propagation, from a numerical standpoint. In this model the
two-dimensional environment will include a line on which fast diffusion takes place while
reproduction and usual diffusion only occur outside this line. For low diffusion, the line has
no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the
propagation is directed by diffusion on the line.
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